
CPE 470 - RAM Configurations

RAM Metrics
● Width: How many bits are read at a time?
● Depth: How many rows are there to read from?

○ Nomenclature: depth x width
○ 128x32 means 128 rows of 32 bits

● Ram Size: Width * Depth = Ram Bits
○ Divide by 8 for Bytes

● Addressability:
○ Byte Addressable → Addresses represent byte locations
○ Word Addressable → Addresses will be multiple of 4

Combining RAMs
● How many bits are needed to address

our RAMS?
○ Log Base 2 of total size in bytes

gives address size
○ $clog2 in system verilog can

compute this
● This address can be split up into 3

parts:
○ Bottom 0 to 2 bits: byte offset in

word
■ Log2 of width in bytes
■ 32 Bit Width → 2 bit byte offset
■ 8 Bit Width → No bye Offset

○ Middle N bits - fed to internal RAMs
■ Log2 of depth

○ Remaining Top Bits: used to select
between RAMs

■ Log2 of # of ram modules

Combining Rams: Vertically & Muxed

● Combine RAMs vertically to
increase their depth

○ Same read size, more
locations

● All RAMs get address
○ Each RAM gets enabled

only when address is
within its range

● RAM output is fed through a
mux

○ Mux also driven by
enable signals from
address

○ Mux enables are one
cycle delayed from inputs

128x32

128x32

128x32

128x32

Addr,
Enable

Addr,
Enable

Addr,
Enable

Addr,
Enable

Enables

Address

Byte OffsetEnables RAM Address

Combining Rams: Vertically & High Z

128x32

128x32

128x32

128x32

● Similar to muxed technique
● Saves area/speed using tri-state

buffers to drive a common output
bus

○ Scales better with higher number
of internal rams

○ Muxes get deeper/slower as they
scale, tri state buffers less so

● Higher risk of errors
○ If any two rams output at the

same time, short circuit

tri-state buffer:

Non-Aligned Reads

● So far, we have only supported
word-aligned reads

○ Each word comes from the output of
a single aligned ram

○ 32 bit system: can only read at
address 0, 4, 8, etc.

● What if we want to read full word, but
at non-aligned addresses?

○ Notice how each column is a single
byte

○ Each byte is either in the same row
as the first byte or the row after

Bytes 0, 1, 2, 3

+0 +1 +2 +3

Addr: 0 0x01 0x23 0x45 0x67

Addr: 4 0x89 0xAB 0xCD 0xEF

+0 +1 +2 +3

Addr: 0 0x01 0x23 0x45 0x67

Addr: 4 0x89 0xAB 0xCD 0xEF

+0 +1 +2 +3

Addr: 0 0x01 0x23 0x45 0x67

Addr: 4 0x89 0xAB 0xCD 0xEF

Reading Address 0

Reading Address 1

Reading Address 3

Combining Rams: Horizontally

128x8 128x8 128x8 128x8

Byte Reorderer

32

Address

Byte OffsetRAM Address
● Each column corresponds to a

specific byte
○ Based on the byte offset,

columns are reordered to
match previous slide pattern

○ Address might get
incremented depending on
offset

● No vertical rows → Top part of
address fed directly into each
module

○ No enable signals, all RAMs
are always enabled

Combining Rams: Multidimensional

● Techniques of vertical and
horizontal combination can be
combined

○ Can get byte addressability
and bigger RAMs

● Requires a lot of control logic to
do both muxing of rows and
reordering of columns

128x8 128x8 128x8 128x8

128x8 128x8 128x8 128x8

Scaling Tradeoffs
● What is the difference between a ram composed of one module versus multiple modules?

○ Example: 256x32 vs dual 128x32
● Answer: Decode Logic

○ Each unit has its own access control logic for reading/writing
● Single RAM is higher density → same size but only one set of control logic

○ How can we use repeated control logic to our advantage?

RAM
256x32

RAM
128x32

RAM
128x32

Adding “Ports”

RAM0

RAM1

A

B

 A

B

Port A (In)

Port B (In)

Port A (Out)

Port B (Out)

Since each inner RAM has its own access channel, can use this to make a 2 port RAM!
Has the same size as the total of RAM0 and RAM1

Adding “Ports”

RAM0

RAM1

A

B

A

B

Port A
(In)

Port
B (In)

Port A
(Out)

Port B
(Out)

● Relies on each port accessing a
different RAM

○ Either A or B can access RAM0
or RAM1, as long as they are
not accessing the same one

● If ports access a piece of data on the
same RAM, one port has to stall

○ Collision detection and
delegation required to manage

● Which port is using which RAM →

has to be remembered for one cycle
○ Use register to track which

output port owns which output
○ Mux output based on that

Collision
Detection

Reg

Collision Cost

● Assuming Random Access using 2 ports:
○ 2 Inner RAMs → 50% collision chance
○ 4 Inner RAMs → 25% collision chance

● Best in use cases where each port is
accessing different parts of memory

● Using more RAM modules lowers chance of
collision
○ Tradeoff: hurts density, more

logic/wiring

RAM0

RAM1

RAM0

RAM1

RAM2

RAM3

References
● https://www.geeksforgeeks.org/design-of-512x8-ram-using-128x8-ram/

